电镀电源的前世今生
工欲善其事必先利其器;而在电镀行业里好多人对电源基本没有任何的要求,一台问题不断、老旧不堪、能耗奇高的电源在线,每天梦想着高品质、高良率,那就真的只能停留在梦想。俗话说好马配好鞍,电镀当然要配好电源。
电镀是将电能转化为化学能的过程,在此过程中,金属离子获得电子而还原成金属原子,金属原子按一定规则排列形成具有一定品粒取向的平滑镀层。直流电镀电源正是提供电子的源泉和使金属原子结晶的动力。因此,电镀电源设备是电镀生产的主要设备,它与镀槽和电镀溶液配合一起,即可完成电镀过程。电镀电源已经能够提供多种形式的电流与波形,赋予了电镀工艺以新的活力。近些年来,常用直流电源设备正在不断更新,特种电镀电源设备随着电力电子技术的发展而有了新的突破,为电镀工艺研究提供了各种各样崭新的电源。
第一代电源——交/直发电机组
19世纪末上海开始电镀工业时,电源采用蓄电池;只有资金雄厚的上海商务印书馆在1912年才应用发电机镀铜。直到20世纪50年代中期,人们还是采用交流/直流发电机组或汞弧整流器为电镀生产提供直流电。在调节直流发电机的输出时,要调节交流电机的转速以改变直流输出。这种系统由于具有较高的可靠性,曾一度在电镀领域占统治地位。然而这种系统效率极低,还要采用各种变阻器进行槽边调压,电能损耗更大。因此在电力电子技术诞生后不久便陆续退出历史舞台。
第二代电源——硅整流器
不久,随着大功率硅整流管被大量的工业化使用,在电镀领域出现了自耦调压加硅整流的直流电镀电源,即采用自耦变压器调节交流电压,再以大功率硅管(堆)进行整流。这种系统虽然在技术上比交/直流发电机组有了进步,输出直流波形比较平滑,但需要用机械或人工拖动自耦变压器调压,不便远程操纵。同时,其效率没有太大改善。这可算是第二代直流电镀电源。
硅整流器使用历史长,技术成熟,目前是整流器主流产品。各种整流电路获得的均是脉动直流电,不是纯直流。为了比较脉动成份的多少,一般用纹波系数来表示,其数值越小,交流成份越少,越接近纯直流。各种整流电路的波动系数不同。其由大到小的次序为:三相半波整流、三相全波桥式整流或带平衡电抗器的六相双反星形整流。
第三代电源——可控硅整流器
20世纪50年代后期,晶闸管在美国的贝尔实验室诞生,从而给包括电镀电源在内的电力电子行业带来革命性的进步,出现了以可控硅为核心的直流电镀电源。可控硅电镀电源,在电路结构上主要有两种形式:一种是利用可控硅在工频变压器原边进行调压,然后在副边用硅管多相整流:另一种是直接用可控硅在工频变压器的副边进行调压整流。不论哪种形式,都是把成熟的调节控制电子电路,运用到对可控硅导通角的控制中,使得可控硅电镀电源的输出特性大大地优于以往的产品。在额定负载情况下,往往能获得令人满意的输出精度、纹波和效率,特别是在效率上,比过去的产品有了显著的提高,功率范围也很宽。这些优良的特性使得它一经出现,便成为直流电镀电源的主流,至今国内仍大量使用这种电源。
可控硅利用改变可控硅管导通角来调整输出平均直流大小的普通可控硅整流器,可控硅管输出的是间断脉冲波,其纹波系数的受导通角控制,输出纹波系数大于普通硅整流电路。
第四代电源——高频开关电源
电力电子技术的进一步发展,高频功率变换技术得到了越来越广泛的应用,就诞生了第四代直流电镀电源--高频开关电源。
开关电源兼有硅整流器的波形平滑性优点及可控硅整流器的调压方便的优点,电流效率高体积最小,数千安培至上万安培的大功率开关电源已进入生产实用阶段。开关电源其频率已达音频,通过滤波实现低纹波输出更为简便易行。而且稳流、稳压等功能更易实现。
随着人们对镀层质量和生产过程自动化以及要满足清洁生产过程节能降耗的严格要求,可控硅电源的缺点越来越明显。首先,它只能在一定的负载范围内保证额定精度,而实际电镀过程中,大多数使用的电流都偏离了整流器的额定值,因此,往往难以满足实际精度需要。纹波也是如此,只在一定范围(一般是在满负载附近)满足额定值,这些,都给进一步提高产品质量带来困难。其次,由于采用模拟电子线路完成移相控制,当它与计算机控制系统连接时,需要的接口电路较繁琐,很不方便。另外,由于摆脱不了工频变压器,使其整机结构个大笨重,耗费铜材多,而且对电网的谐波干扰也很严重。
高频开关电源的工作原理是功率变换。它是功率转移技术与脉宽调制技术相结合的高技术产物,是当代电力电子学理论发展的最新体现。高频开关电源较之可控硅电源有着许多无可比拟的优势:首先在电路结构上,它去掉了可控硅电源的工频变压器,采用脉宽调制方式控制场效应管工作,尺寸大幅度减小,质量明显减轻,节省大量铜材和优质硅钢片;可控硅电源全量程的功率因数为0.7,而高频开关电源则达到0.90~0.95;可控硅电源的输出脉动随负载的大小和整流相数的变化而变化,工作频率较低,在大电流时往往不加滤波电路。而高频开关电源的输出脉动较小,由于输出脉冲的频率很高,所以低通滤波器的体积大幅度减小,这就十分有利于提高电源的输出纹波特性。从工作效率上看,可控硅电源的工频变压器的转换效率通常为85%,再加上整流部分的各种损耗,其在最理想状态下效率也只在75%左右。高频开关电源的效率一般在 80%~90%左右。如果采用先进的谐振型开关电路,则其效率还会更高。从输出精度看,可控硅电源在控制角很大时,调整能力很差,输出电压、电流的精度从半载到满载时的理想情况下,方可达到3%~5%,而且电压,电流的线性也不够好,这是由于可控硅电源本身电路的体制造成的。而高频开关电源则在全量程范围内精度均可达到1%以上,甚至可以达到0.1%。总的来看,从体积、质量、效率、功率因数、精度、控制电路、工作频率、保护功能、功率、带载启停、对电网干扰、节能节材等各个方面比较,高频开关电源具有它一系列的优越性。它的体积小(只有同功率可控硅整流器的1/3~1/5);质量轻(只有同功率可控硅整流器的1/4);效率高(可控硅整流器 75%左右,高频开关电源85%左右):功率因数不加校正全范围0.7,加校正全范围可达0.9以上;控制精度在全范围内小于1%或更高,控制电路简单,有专用集成控制器;工作频率高,一般在20kHz~200kHz或更高:保护反应快,只有1ms,且有自恢复功能:它允许带载启停,对电网的干扰也较小。
目前,高频开关电源作为新一代产品,一些中小规格的电源设备已经得到电镀用户认同,其市场覆盖率正日益扩大。大功率高频开关电源的单机容量暂时还受到器件和材料的限制。但是,随着电源并联技术的提高,电子器件的发展,采用多组并联的大功率高频开关电源,可以替代部分大电流电镀使用的硅整流设备。
其他特殊电源——脉冲电源设备
脉冲电源主要是由嵌入式单片计算机等进行控制,因此,除实现脉冲输出之外,一般具备多种控制功能。目前主要应用于金、银、钯等贵金属电镀和PCB铜沉孔。
(1)自动稳流稳压。传统硅整流器电流或电压无法自动稳定,随电网电压的波动而波动。而脉冲电源则拥有高精度的自动调节功能,脉冲电源输出电压可以几乎不变。脉冲电源的自动调节功能一般具有二种模式:一,恒电流限压模式。二,恒电压限流模式。
(2) 多段式运行模式。铝阳极氧化或硬铬电镀时,往往需要进行反向电解、大电流冲击、阶梯送电等操作。具有多段式运行模式的脉冲电源则只需提前设定,生产时可自动按顺序进行自动调节。这一功能对硬铬电镀是非常有用的,每一段时间可在0~255秒内调节设定。
(3)双向脉冲功能。正负脉冲频率、占空比、正反向输出时间均可独立调节,使用灵活、方便。配合硬铬电镀工艺,可获得不同物理性能的镀层。
(4) 直流叠加功能。输出正反向脉冲电流的同时,由同一台电源叠加输出一纯直流成分,更拓宽了脉冲电源的使用范围及用途。
总结:电镀属于电化学加工过程,电源的因素必将对电镀工艺过程产生直接影响,电镀电源在电镀工艺中具有重要地位。电镀电源和低纹波系数整流电源在电镀行业中的应用,让电镀界同仁在选择整流电源、解决电镀故障、提高电镀质量有所帮助。
同类文章排行
- 我国氢能产业发展迎来重要窗口期
- 关于矿用整流柜的使用环境
- 整流柜有哪些外形特征?
- 关于高频开关电源发展的四大趋势
- 国家能源局:可再生能源,完善绿色电力
- 我国新能源发展现状
- 氢能在工业领域的妙用:你知道多少?
- 国家能源局组织发布《新型电力系统发展蓝皮书》
- 2023世界氢能技术大会中外对话:氢能国际合作机遇与挑战
- 中国氢能产业具备10万亿规模潜力